Conversational AI: Building Intelligent Chatbots Across Platforms - 03: Hands-On: Build a Website Chatbot with OpenAI + LangChain
🤖 Project Overview: What We’re Building
In this tutorial, we’re diving into the practical side of conversational AI by building a full-stack website chatbot using LangChain and OpenAI, entirely on the free tier. This project is designed to help you understand how to integrate large language models into real-world applications without relying on paid tools. By the end, you’ll have a fully functional chatbot that can hold multi-turn conversations directly on your website.
🎯 Chatbot Use Case: Conversational Website Assistant
The bot we’ll build acts like a customer-facing assistant capable of:
- Holding a conversation (with memory)
- Answering questions based on previous inputs
- Responding naturally using an LLM like GPT-3.5 or open-source alternatives
- Running entirely within a free deployment setup (Railway + Vercel)
Think of it as a starter template for:
- Support bots for SaaS
- Product FAQs bots
- Personal portfolio site assistants
- E-learning bots for documentation
🧱 Project Stack Breakdown
Here’s the tech stack we’ll use:
Backend
- Node.js + Express — lightweight API server
- LangChain (JS) — orchestrates the LLM + memory + chains
- OpenAI / Hugging Face — for the LLM interface (we’ll support both)
- BufferMemory — to track past user-bot interactions in memory
Frontend
- React + TailwindCSS — clean, minimal UI for the chatbot
- Fetch-based API calls to our backend
Deployment
- Vercel (Frontend)
- Railway (Backend)
- GitHub for version control and CI/CD
💸 Free-Tier Strategy: Cost-Conscious from the Ground Up
This project is built for developers who want to:
- Avoid vendor lock-in
- Experiment without needing a credit card
- Prototype with generous free usage limits
Here’s how we handle common cost-related blockers:
Concern | Free-Tier Solution |
---|---|
LLM Usage | OpenAI free-tier key or Hugging Face API (text-generation-inference) |
Vector DB | Chroma - local, embedded vector store |
Deployment | Vercel (free hobby plan) + Railway (free backend instance) |
You’ll be able to run this bot end-to-end for $0/month.
🧩 Architecture Preview
The high-level flow looks like this:
User Input -> React Frontend -> Express API -> LangChain LLM Chain -> LLM Response -> Back to User
- Memory is preserved in the backend per session (in-process for now)
- Optional file upload uses LangChain’s RAG tools with Chroma (all local)
📁 Folder Structure (Planned)
We’ll structure our project clearly for modularity:
/chatbot-openai-langchain-starter
|-- client/ # React frontend
|-- server/ # Express + LangChain backend
| |-- routes/
| |-- llm/
| |-- memory/
|-- .env # For API keys
|-- README.md # Setup instructions
🚀 Next Steps
Now that we know what we’re building and how everything fits together, it’s time to get our hands dirty. In the next section, we’ll:
- Scaffold the backend
- Set up LangChain and connect to an LLM
- Write our first API route
Let’s go build a chatbot, shall we? 🛠️
⚙️ Setting Up the Backend: LangChain + Express API
Let’s kick things off by building the backend for our chatbot. We’ll use Node.js + Express as our server and plug in LangChain to handle language model interactions. This section walks you through the exact steps — code-first, no assumptions. Ready to build? Let’s go 🛠️
📁 Project Structure
Before diving into code, here’s how we’ll organize our project. Keeping a clean folder structure helps with scalability and debugging.
chatbot-openai-langchain-starter/
├── server/ # Backend API
│ ├── index.js # Main entry point
│ ├── routes/ # API routes
│ │ └── chat.js # Chat endpoint logic
│ ├── llm/ # LangChain-related logic
│ │ └── langchain.js # Chain + memory config
│ └── .env # Environment variables
├── client/ # Frontend (will be added later)
└── README.md # Documentation
🧩 Step 1: Initialize the Project
Start by setting up your project folder and backend workspace:
mkdir chatbot-openai-langchain-starter && cd chatbot-openai-langchain-starter
mkdir server && cd server
npm init -y
This sets up a new Node.js project inside the server
directory.
📦 Step 2: Install Dependencies
We need these packages:
express
: Web serverdotenv
: Manage environment variablescors
: Allow frontend to call backendlangchain
: Power LLM chains and memoryopenai
: SDK for calling OpenAI models
Install everything in one go:
npm install express dotenv cors langchain openai
Enable ES module support by editing package.json
:
{
"type": "module"
}
This allows us to use import
/export
instead of require()
.
🛠️ Step 3: Basic Express Server
Now we’ll set up our basic API server that will act as a middleman between the frontend and the LLM.
Create server/index.js
:
import express from "express";
import dotenv from "dotenv";
import cors from "cors";
import chatRoute from "./routes/chat.js";
dotenv.config();
const app = express();
const PORT = process.env.PORT || 3001;
app.use(cors());
app.use(express.json());
app.use("/chat", chatRoute);
app.get("/", (req, res) => {
res.send("Chatbot backend is running");
});
app.listen(PORT, () => {
console.log(`Server listening on http://localhost:${PORT}`);
});
This initializes the server and mounts our chatbot API at /chat
.
🧠 Step 4: Create the Chat Route
We’ll now define the POST route where incoming user messages are received and passed to the LLM.
Create server/routes/chat.js
:
import express from "express";
import { runChat } from "../llm/langchain.js";
const router = express.Router();
router.post("/", async (req, res) => {
const { message } = req.body;
if (!message) {
return res.status(400).json({ error: "Message is required" });
}
try {
const response = await runChat(message);
res.json({ response });
} catch (err) {
console.error("Chat error:", err);
res.status(500).json({ error: "Something went wrong" });
}
});
export default router;
This is our /chat
endpoint — it accepts a user message, passes it to LangChain, and returns the response.
🤖 Step 5: LangChain Integration
This is where we bring in the power of LLMs.
Create server/llm/langchain.js
:
import { ChatOpenAI } from "langchain/chat_models/openai";
import { ConversationChain } from "langchain/chains";
import { BufferMemory } from "langchain/memory";
const model = new ChatOpenAI({
temperature: 0.7,
openAIApiKey: process.env.OPENAI_API_KEY,
});
const memory = new BufferMemory();
const chain = new ConversationChain({ llm: model, memory });
export async function runChat(input) {
const result = await chain.call({ input });
return result.response;
}
Here’s what this setup does:
- Connects to OpenAI using
ChatOpenAI
- Adds short-term memory via
BufferMemory
- Wraps both in a
ConversationChain
, which is a dialogue loop - Exposes
runChat()
that accepts user input and returns a response
🔐 Step 6: Setup Environment Variables
Inside your server/
folder, create a .env
file:
OPENAI_API_KEY=your_openai_key_here
This keeps sensitive credentials out of your source code.
✅ Step 7: Run and Test Your Backend
Start your server:
node index.js
Use Postman or curl to test the chat route:
curl -X POST http://localhost:3001/chat \
-H "Content-Type: application/json" \
-d '{"message": "Hello, who are you?"}'
You should receive a response from your bot 🧠💬
With this, your chatbot backend is fully functional. You now have:
- An Express API that routes messages
- LangChain hooked to OpenAI with memory
- A clean project foundation to expand on
Next, we’ll look into improving context awareness by expanding how memory works in LangChain 🧠
🧠 Adding Memory with LangChain: Context Awareness
Most real conversations rely on memory. Without it, every new message would feel like talking to a goldfish 🐟. In this section, we’ll make our chatbot context-aware using LangChain’s memory modules.
By the end of this section, your bot will:
- Understand follow-up questions
- Refer back to previous user messages
- Feel more natural and intelligent 🤖
🔍 What is BufferMemory?
BufferMemory
is one of LangChain’s simplest memory classes. It keeps a running history of the chat in memory. This is suitable for most short-lived chatbot sessions.
It stores conversation as a list of alternating messages (user → bot → user → bot…) and passes the entire history into the prompt every time. No database needed.
🧩 Step 1: Refactor the LangChain Setup
Let’s update server/llm/langchain.js
to make memory a bit more dynamic.
// server/llm/langchain.js
import { ChatOpenAI } from "langchain/chat_models/openai";
import { ConversationChain } from "langchain/chains";
import { BufferMemory } from "langchain/memory";
// 🧠 Create memory per session/user
const memoryStore = new Map();
function getChain(sessionId) {
if (!memoryStore.has(sessionId)) {
const memory = new BufferMemory();
const model = new ChatOpenAI({
temperature: 0.7,
openAIApiKey: process.env.OPENAI_API_KEY,
});
const chain = new ConversationChain({ llm: model, memory });
memoryStore.set(sessionId, chain);
}
return memoryStore.get(sessionId);
}
export async function runChat(input, sessionId = "default") {
const chain = getChain(sessionId);
const result = await chain.call({ input });
return result.response;
}
🧠 Explanation:
- We use a simple
Map
object to track memory bysessionId
- Each session gets its own
ConversationChain
andBufferMemory
- You can eventually replace this with Redis or DB-backed memory for production
🛠️ Step 2: Update the Chat Route to Use Sessions
Update server/routes/chat.js
to accept a session ID:
// server/routes/chat.js
import express from "express";
import { runChat } from "../llm/langchain.js";
const router = express.Router();
router.post("/", async (req, res) => {
const { message, sessionId } = req.body;
if (!message) {
return res.status(400).json({ error: "Message is required" });
}
try {
const response = await runChat(message, sessionId);
res.json({ response });
} catch (err) {
console.error("Chat error:", err);
res.status(500).json({ error: "Something went wrong" });
}
});
export default router;
Now, the API can track multiple conversations at once by passing different sessionId
s.
You can test it like this:
curl -X POST http://localhost:3001/chat \
-H "Content-Type: application/json" \
-d '{"message": "Hello, who are you?", "sessionId": "abc123"}'
🔍 Debugging Memory State
Want to peek under the hood? Log the memory content by modifying runChat()
:
console.log("\n--- Chat History ---\n", memory.chatHistory);
This will help you debug and understand how memory evolves.
✅ Result: Multi-Turn Chatbot
You’ve now built a chatbot that:
- Tracks conversation per session
- Supports multiple concurrent users
- Handles context like a pro
In the next section, we’ll switch gears and build a beautiful frontend interface in React to talk to our bot 💬
💬 Building the React Frontend Chat Interface
With the backend running smoothly, it’s time to give our chatbot a face! In this section, we’ll build a sleek and responsive React + TailwindCSS frontend that connects to our Express + LangChain backend.
By the end, you’ll have a fully functional chat UI with:
- Chat history
- Message input box
- Bot typing indicator
- API integration
🧩 Step 1: Create React App with Vite
Navigate to the project root and scaffold your frontend:
cd ..
npm create vite@latest client -- --template react
cd client
npm install
Then install Tailwind CSS:
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p
Update tailwind.config.js
:
/** @type {import('tailwindcss').Config} */
export default {
content: ["./index.html", "./src/**/*.{js,ts,jsx,tsx}"],
theme: {
extend: {},
},
plugins: [],
};
In index.css
, replace with:
@tailwind base;
@tailwind components;
@tailwind utilities;
🛠️ Step 2: Build the Chat UI
Create a clean layout in src/App.jsx
:
import { useState } from "react";
function App() {
const [messages, setMessages] = useState([]);
const [input, setInput] = useState("");
const [loading, setLoading] = useState(false);
const sessionId = "demo-session";
const sendMessage = async () => {
if (!input.trim()) return;
const userMessage = { sender: "user", text: input };
setMessages([...messages, userMessage]);
setInput("");
setLoading(true);
try {
const res = await fetch("http://localhost:3001/chat", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ message: input, sessionId }),
});
const data = await res.json();
const botMessage = { sender: "bot", text: data.response };
setMessages((prev) => [...prev, botMessage]);
} catch (err) {
alert("Something went wrong");
} finally {
setLoading(false);
}
};
const handleKeyPress = (e) => {
if (e.key === "Enter") sendMessage();
};
return (
<div className="min-h-screen bg-gray-100 flex flex-col items-center justify-center p-4">
<div className="w-full max-w-xl bg-white rounded-xl shadow p-4 space-y-4">
<div className="overflow-y-auto h-96 border p-3 rounded">
{messages.map((msg, i) => (
<div
key={i}
className={`mb-2 ${
msg.sender === "user" ? "text-right" : "text-left"
}`}
>
<span
className={`inline-block px-3 py-2 rounded-lg ${
msg.sender === "user" ? "bg-blue-200" : "bg-gray-200"
}`}
>
{msg.text}
</span>
</div>
))}
{loading && (
<div className="text-sm italic text-gray-500">Bot is typing...</div>
)}
</div>
<div className="flex items-center gap-2">
<input
className="flex-1 border rounded px-3 py-2"
placeholder="Type a message..."
value={input}
onChange={(e) => setInput(e.target.value)}
onKeyDown={handleKeyPress}
/>
<button
onClick={sendMessage}
className="bg-blue-500 text-white px-4 py-2 rounded"
>
Send
</button>
</div>
</div>
</div>
);
}
export default App;
🔌 Step 3: Connect to Backend API
Make sure your backend (localhost:3001
) is running when you test this. We use the fetch()
API to send the message and receive a response.
💡 Dev tip: You can use Vite proxy for CORS-free development by updating vite.config.js
later.
✅ Result: Interactive Chat UI
You now have a frontend that:
- Tracks messages in React state
- Sends input to your chatbot API
- Displays both user and bot replies
- Shows loading feedback
In the next part, we’ll deploy this using Vercel and Railway so others can use your chatbot online 🚀
🚀 Free Deployment: Vercel (Frontend) + Railway (Backend)
Now that your chatbot works locally, let’s take it live — for free! We’ll use Vercel to host the frontend and Railway to host the backend. Both have generous free tiers and integrate smoothly with GitHub.
You’ll end up with:
- A live website for your chatbot UI (Vercel)
- A live API server that handles LangChain + OpenAI logic (Railway)
🧩 Step 1: Push Your Code to GitHub
First, commit and push your project to a GitHub repo:
git init
git add .
git commit -m "Initial chatbot app"
git remote add origin https://github.com/yourusername/chatbot-openai-langchain-starter.git
git push -u origin main
🛠️ Step 2: Deploy Backend to Railway
- Go to https://railway.app
- Click New Project → Deploy from GitHub Repo
- Select your repo and choose the
server/
directory as root
📁 Railway Settings
- Root Directory:
server
- Start Command:
node index.js
🔐 Add Environment Variables
- Key:
OPENAI_API_KEY
- Value: your OpenAI key
Railway will detect Express and auto-deploy it. After deployment, you’ll get a public URL like:
https://chatbot-api-production.up.railway.app
🎨 Step 3: Deploy Frontend to Vercel
- Go to https://vercel.com
- Click Add New Project and select your GitHub repo
- Choose the
client/
folder as the project root
🛠 Vercel Build Settings
- Framework Preset: Vite
- Output Directory:
dist
🔌 Add Environment Variable (Optional)
If you’re proxying API URLs, you can set:
VITE_API_URL=https://your-backend-url/chat
⚙️ Optional: Fix CORS on Backend
If your frontend can’t reach your backend, you might need to tweak CORS:
// server/index.js
app.use(cors({ origin: "https://your-frontend.vercel.app" }));
Or allow all (for testing only):
app.use(cors());
🌐 Result: Public Chatbot App
You now have:
- Live frontend at
https://your-chatbot.vercel.app
- Live backend API at
https://your-chatbot-api.railway.app
Test it in the browser, share with friends, or embed it in your portfolio!
Next up: we’ll add optional file upload + document Q&A using Retrieval-Augmented Generation 📄🧠
📄 Optional: Add File Upload + RAG (Retrieval-Augmented Generation)
Want your chatbot to answer questions based on a user-uploaded PDF? This is where RAG (Retrieval-Augmented Generation) comes in.
We’ll enable:
- Uploading a PDF
- Parsing its text
- Embedding with OpenAI or Hugging Face
- Storing + searching in a local Chroma vector store
- Querying the doc contextually
All of this works on a local, free setup — no paid vector DBs needed! 🧠
📦 Step 1: Install Additional Dependencies
In your server/
folder:
npm install multer pdf-parse
These packages handle file uploads and PDF parsing.
📁 Step 2: Add Upload Endpoint
Create server/routes/upload.js
:
import express from "express";
import multer from "multer";
import pdf from "pdf-parse";
import fs from "fs";
import path from "path";
const upload = multer({ dest: "uploads/" });
const router = express.Router();
router.post("/", upload.single("file"), async (req, res) => {
const filePath = req.file.path;
try {
const dataBuffer = fs.readFileSync(filePath);
const parsed = await pdf(dataBuffer);
fs.unlinkSync(filePath); // delete uploaded file
res.json({ text: parsed.text });
} catch (err) {
console.error("PDF parse error:", err);
res.status(500).json({ error: "Failed to parse PDF" });
}
});
export default router;
In index.js
:
import uploadRoute from "./routes/upload.js";
app.use("/upload", uploadRoute);
🧠 Step 3: Create Vector Store + QA Chain
Create server/llm/retriever.js
:
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { Chroma } from "langchain/vectorstores/chroma";
import { RetrievalQAChain } from "langchain/chains";
import { ChatOpenAI } from "langchain/chat_models/openai";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import fs from "fs";
let vectorStore;
export async function createKnowledgeBase(text) {
fs.writeFileSync("uploads/docs.txt", text);
const loader = new TextLoader("uploads/docs.txt");
const docs = await loader.load();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 200,
});
const chunks = await splitter.splitDocuments(docs);
const embeddings = new OpenAIEmbeddings();
vectorStore = await Chroma.fromDocuments(chunks, embeddings);
}
export async function askDocQuestion(query) {
if (!vectorStore) throw new Error("No knowledge base loaded");
const model = new ChatOpenAI();
const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever());
const result = await chain.call({ query });
return result.text;
}
🔌 Step 4: Create Chat Route for RAG
In server/routes/chat-doc.js
:
import express from "express";
import { askDocQuestion } from "../llm/retriever.js";
const router = express.Router();
router.post("/", async (req, res) => {
const { message } = req.body;
if (!message) return res.status(400).json({ error: "Message required" });
try {
const response = await askDocQuestion(message);
res.json({ response });
} catch (err) {
console.error("RAG chat error:", err);
res.status(500).json({ error: "RAG failed" });
}
});
export default router;
Add this to index.js
:
import chatDocRoute from "./routes/chat-doc.js";
app.use("/chat-doc", chatDocRoute);
✅ Final Flow
- Upload PDF → Extract + embed text
- Store in Chroma (in-memory vector DB)
- Ask questions → Retrieve relevant chunks → LLM answers based on them
Next, we’ll polish UX with reset, typing indicators, and error boundaries 💬✨
✨ UX Polish: Typing Indicators, Reset Button, and Error Handling
Now that our chatbot is feature-rich, let’s take care of the user experience (UX) — the part that makes it feel truly alive.
We’ll improve:
- ✅ Visual feedback (“Bot is typing…”)
- 🗑️ Reset chat option
- 🚨 Error messages
These polish points might seem small, but they dramatically enhance usability and make your bot feel professional.
🎨 Step 1: Add Typing Indicator
Update src/App.jsx
to show a message while the bot is generating a response.
Here’s the modified React logic:
// src/App.jsx
const [loading, setLoading] = useState(false);
...
{messages.map((msg, i) => (
<div key={i} className={`mb-2 ${msg.sender === 'user' ? 'text-right' : 'text-left'}`}>
<span className={`inline-block px-3 py-2 rounded-lg ${msg.sender === 'user' ? 'bg-blue-200' : 'bg-gray-200'}`}>
{msg.text}
</span>
</div>
))}
{loading && <div className="text-left text-sm italic text-gray-500">Bot is typing...</div>}
Now every time you send a message, the UI gives immediate feedback that something’s happening.
🔄 Step 2: Add Reset Button
Let’s allow users to clear the chat history:
// Inside return()
<button
onClick={() => setMessages([])}
className="text-sm text-red-500 underline ml-auto block mt-1"
>
Clear Chat
</button>
Add this just below the chat history container. It simply resets the messages
array.
🧯 Step 3: Add Error Handling
Wrap your fetch()
call in a try/catch
, and show alerts or inline error messages:
try {
const res = await fetch("http://localhost:3001/chat", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ message: input, sessionId }),
});
if (!res.ok) throw new Error("API failed");
const data = await res.json();
const botMessage = { sender: "bot", text: data.response };
setMessages((prev) => [...prev, botMessage]);
} catch (err) {
console.error(err);
setMessages((prev) => [
...prev,
{ sender: "bot", text: "⚠️ Something went wrong. Please try again." },
]);
}
This way, even if something breaks, the user isn’t left staring at a frozen screen.
💄 Result: A Smooth, Polished UX
With these enhancements:
- The bot feels responsive
- Users can reset the chat any time
- Errors are caught and communicated clearly
In the final article sections, we’ll look at prompt engineering, LangChain debugging, and wrap up the repo and deployment ✨
🧪 Bonus Tips: LangChain Debugging + Prompt Engineering
To truly master chatbot development, you need two extra skills:
- 🛠 Debugging LangChain chains
- 🎨 Crafting effective prompts
These skills can help you build more reliable, intelligent, and tailored bots — especially when handling tricky customer use-cases.
🧭 Step 1: Enable LangChain Debug Mode
LangChain can print out internal chain activity using a built-in global flag.
Add this to your entry point (e.g. index.js
):
process.env.LANGCHAIN_HANDLER = "console";
Alternatively, in code:
import { setHandler } from "langchain/callbacks";
setHandler("console");
Now when you run your bot, you’ll see:
- Prompts being generated
- Token counts
- LLM call/response timings
Super useful for tracing what went wrong or tuning performance.
✍️ Step 2: Use Prompt Templates
LangChain lets you define reusable, fill-in-the-blank prompts.
Here’s how you could rewrite langchain.js
using a custom system prompt:
import { PromptTemplate } from "langchain/prompts";
import { LLMChain } from "langchain/chains";
import { ChatOpenAI } from "langchain/chat_models/openai";
import { BufferMemory } from "langchain/memory";
const prompt = PromptTemplate.fromTemplate(`
You are a helpful website assistant. Always answer clearly.
Conversation so far:
{history}
User: {input}
Assistant:
`);
const memory = new BufferMemory();
const llm = new ChatOpenAI({
temperature: 0.7,
openAIApiKey: process.env.OPENAI_API_KEY,
});
const chain = new LLMChain({ prompt, llm, memory });
export async function runChat(input) {
const result = await chain.call({ input });
return result.text;
}
This gives you much more control over:
- Personality
- Format
- Tone
👤 Step 3: Try Persona Prompts
Make your assistant adopt a role, like:
You are a sarcastic AI assistant who gives witty answers.
You remember the user's favorite color and always mention it.
Or for serious use cases:
You are a financial assistant who gives concise and factual answers.
If unsure, say "I don't know".
Use PromptTemplate.fromTemplate(...)
to inject these styles into your chain.
🧠 Step 4: Mix with Memory
When using BufferMemory
, LangChain automatically fills {history}
with past turns. So your prompt templates can smoothly incorporate context-aware behavior.
If you want more control, you can manually access memory too:
console.log(await memory.loadMemoryVariables());
✅ Takeaway
With debugging and prompt design:
- You can spot problems faster
- Customize behavior precisely
- Optimize tokens and cost
In the final section, we’ll wrap up the project and share the GitHub repo 🎉
📦 Final Thoughts + GitHub Repo Setup
You’ve now built a full-stack, context-aware, deployable chatbot with LangChain and OpenAI — and best of all, using only free-tier tools. Let’s wrap up the series by reviewing what you’ve built, finalizing the GitHub repo, and suggesting ways to expand your bot further.
🧱 What You’ve Built
✅ Backend API (Express + LangChain)
- Session-based memory with BufferMemory
- Optional RAG (Retrieval-Augmented Generation) with Chroma
- Robust routing with error handling
✅ Frontend UI (React + Tailwind)
- Live chat interface with typing indicators
- Reset and error UX
- API integration with session-based context
✅ Deployment
- Backend live on Railway
- Frontend live on Vercel
- Connected via environment config
✅ Optional Features
- Upload PDF → Embed → Ask questions
- Prompt engineering + persona styling
📁 Recommended Repo Structure
If you haven’t already, organize your files like this:
chatbot-openai-langchain-starter/
├── client/ # React frontend
│ ├── src/
│ └── ...
├── server/ # Express + LangChain backend
│ ├── routes/
│ ├── llm/
│ ├── uploads/ # Optional file-based RAG
│ └── index.js
├── .env.example
├── README.md
Include a .env.example
like:
OPENAI_API_KEY=your_openai_key_here
📝 Sample README.md Template
Create a friendly README for devs exploring your bot:
# 🤖 Chatbot Starter (LangChain + OpenAI)
A full-stack chatbot using React + Express + LangChain. Context-aware, memory-enabled, and free-tier deployable.
## 🧠 Features
- Chat with OpenAI (GPT-3.5)
- Context memory per session
- Optional: Ask questions on uploaded PDFs
- Free deployment (Vercel + Railway)
## 🚀 Quick Start
```bash
git clone https://github.com/yourusername/chatbot-openai-langchain-starter
cd server && npm install && node index.js
cd ../client && npm install && npm run dev
```
## 🔐 Env Variables
- `OPENAI_API_KEY` (backend)
- `VITE_API_URL` (optional, frontend)
## 📦 Built With
- LangChain JS
- OpenAI
- Express
- React + TailwindCSS
- Railway + Vercel
🌱 Ideas for Extensions
Here are a few ways to take this bot to the next level:
- 🧑💻 Add authentication with Supabase or Clerk
- 🗣 Use Whisper for voice input
- 🌍 Make it multilingual with Google Translate API
- 🧠 Switch to Hugging Face models for self-hosting
- 📜 Save chat history to a DB (e.g., SQLite or Supabase)
📌 Final Repo Suggestion
Name: chatbot-openai-langchain-starter
Include a clean README.md
, environment sample, and clear folder structure. You can even deploy a live demo and link it in your GitHub profile.
Congrats 🎉 — You’ve not just followed a tutorial, you’ve built a deployable, extensible chatbot foundation you can fork, scale, and customize as needed!
See you in the next series — where we’ll dive deeper into advanced memory, agent routing, and multi-modal input 👋
Hey, I’m Darshan Jitendra Chobarkar — a freelance full-stack web developer surviving the caffeinated chaos of coding from Pune ☕💻 If you enjoyed this article (or even skimmed through while silently judging my code), you might like the rest of my tech adventures.
🔗 Explore more writeups, walkthroughs, and side projects at dchobarkar.github.io
🔍 Curious where the debugging magic happens? Check out my commits at github.com/dchobarkar
👔 Let’s connect professionally on LinkedIn
Thanks for reading — and if you’ve got thoughts, questions, or feedback, I’d genuinely love to hear from you. This blog’s not just a portfolio — it’s a conversation. Let’s keep it going 👋